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Network Formation Games and
the Potential Function Method
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Abstract

Large computer networks such as the Internet are built, operated, and used by a large number of
diverse and competitive entities. In light of these competing forces, it is surprising how efficient
these networks are. An exciting challenge in the area of algorithmic game theory is to understand
the success of these networks in game theoretic terms: what principles of interaction lead selfish
participants to form such efficient networks?

In this chapter we present a number of network formation games. We focus on simple games that
have been analyzed in terms of the efficiency loss that results from selfishness. We also highlight a
fundamental technique used in analyzing inefficiency in many games: the potential function method.

19.1 Introduction

The design and operation of many large computer networks, such as the Internet, are
carried out by a large number of independent service providers (Autonomous Systems),
all of whom seek to selfishly optimize the quality and cost of their own operation.
Game theory provides a natural framework for modeling such selfish interests and
the networks they generate. These models in turn facilitate a quantitative study of the
trade-off between efficiency and stability in network formation. In this chapter, we
consider a range of simple network formation games that model distinct ways in which
selfish agents might create and evaluate networks. All of the models we present aim
to capture two competing issues: players want to minimize the expenses they incur in
building a network, but at the same time seek to ensure that this network provides them
with a high quality of service.

There are many measures by which players might evaluate the quality of a network.
In this chapter, we focus primarily on measures of distance (Section 19.2) and con-
nectivity (Section 19.3), rather than measures based on congestion effects (as is done
in Chapter 18). We also assume that players have financial considerations. In Sections
19.2 and 19.3, players seek to minimize the construction costs of the networks they
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create. In Section 19.4, we look at a game with a more sophisticated financial aspect:
players represent service providers who set prices for users and seek to maximize their
profit, namely their income from users minus the cost of providing the service.

For all of the games we consider, we use Nash equilibrium as the solution concept,
and refer to networks corresponding to these equilibria as being stable. The models
we focus on involve players who can unilaterally build edges, and thus the Nash
equilibrium solution concept is appropriate.

To evaluate the overall quality of a network, we consider the social cost, or the sum
of all players’ costs. We refer to the networks that optimize social cost as optimal or
socially efficient. The main goal of this chapter is to better understand the quantitative
trade-off between networks that are stable and those that are socially efficient. More
precisely, we are interested in bounding the price of anarchy and the price of stability (as
defined in Chapter 17). The models we consider in this chapter are network formation
games in which these measures are provably small.

In Section 19.2 we consider a local connection game where the nodes of the graph
are players who pay for the edges that connect them directly to other nodes (incident
edges). In selecting a strategy, players face two conflicting desires: to pay as little as
possible, and to have short paths to all other nodes. Our goal here is to bound the
efficiency loss resulting from stability. Such connection games have been extensively
studied in the economics literature (see Jackson (2006) for a survey) to model social
network formation, using edges to represent social relations. The local connection
game can also be thought of as a simple model for the way subnetworks connect in
computer networks (by establishing peering points), or as modeling the formation of
subnetworks in overlay systems such as P2P (peer-to-peer) networks connecting users
to each other for downloading files.

We will use a model in which players can form edges to a neighbor unilaterally,
and will use Nash equilibrium as our solution concept. This differs from much of the
literature in economics, where it is typically assumed that an edge between two players
needs the consent or contribution from both players, and where the notion of pairwise
stability is used instead of Nash equilibria. We will discuss how the results in Section
19.2 extend to models using pairwise stable equilibria in the notes in Section 19.5.1.

The model we examine was introduced by Fabrikant et al. (2003) and represents
the first quantitative effort to understand the efficiency loss of stable networks. In this
game, a single parameter « represents the cost of building any one edge. Each player
(represented by a node) perceives the quality of a network as the sum of distances to
all other nodes. Players aim to minimize a cost function that combines both network
quality and building costs: they attempt to minimize the sum the building costs they
incur and the distances to all other players. Thus, players use « as a trade-off parameter
between their two objectives. This is perhaps the simplest way to model this type of
trade-off. While the simplicity of this game makes it easy to evaluate, such a stylized
model ignores a number of issues, such as varying costs and possible congestion effects.
In Section 19.5.1, we discuss related models that address some of these issues.

In Section 19.3 we study a very different (and also quite simple) model of network
design, introduced by Anshelevich et al. (2004), called the global connection game.
Whereas players in the game of Section 19.2 only make local choices (which other nodes
to link to), players in this game make global decisions, in that they may build edges
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throughout the network. Unlike the local connection game, this global game attempts
to model players who actually build and maintain large-scale shared networks. This
model also allows for greater heterogeneity in the underlying graph.

In the global connection game, a player is not associated with an individual node of
the networks, but instead has certain global connectivity goals. To achieve these goals,
a player may contribute money to any set of edges in the network. As before, we view
connectivity as the primary measure of quality. However, players do not desire uniform
connectivity; instead, each player has a subset of nodes that it needs to connect, and
aims to do so as cheaply as possible. Furthermore, unlike in the local game, players are
not concerned with distance, and simply want to connect their terminals.

As in the previous model, players are sensitive to costs. Edge ¢ has a cost ¢, > 0,
and players who use e share this cost. In particular, we focus on a fair sharing rule;
all players using an edge must share its cost evenly. This natural cost-sharing scheme
can be derived from the Shapley value, and has many nice properties. We also examine
other cost-sharing games, and discuss the role of fair sharing in the price of stability
results.

A key technique used in this section is the potential function method. This method
has emerged as a general technique in understanding the quality of equilibria. We
review this technique in detail in Section 19.3.2. While this technique provides results
only regarding the price of stability, it is interesting to note that many of the currently
known price of anarchy results (e.g., most of the results in Part III of this book) are for
potential games.

In Section 19.4, we consider another potential game; a facility location game with a
more sophisticated cost model. In the previous two sections, players simply minimized
their costs. Here, edges still have costs, but players also select prices for users so as
to maximize net income: price charged minus the cost paid. We again consider a very
simplified model in which players place facilities to serve clients, thereby forming
a network between the providers and the clients. We show that a socially efficient
network is stable (i.e., the price of stability is 1), and bound the price of anarchy.

In the context of facility location games, we also bound the quality of solutions
obtained after sufficiently long selfish play, without assuming that players have yet
reached an equilibrium. As we have seen in part I of this book, equilibrium solutions
may be hard to find (Chapter 2), and natural game play may not converge to an
equilibrium (Chapter 4). Thus it is often useful to evaluate the quality of the transient
solutions that arise during competitive play. The facility location game considered in
this section is one of the few classes of games for which this strong type of bound is
known.

19.2 The Local Connection Game

In this section we consider the simple network formation game of Fabrikant et al.
(2003), where players can form links to other players. We consider a game with n
players, where each player is identified with a node. Node u# may choose to build
edges from u to any subset of nodes, thereby creating a network. Players have two
competing goals; players want to build (and thus pay) for as few edges as possible, yet
they also want to form a network that minimizes the distance from their own node to
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all others. Our main focus in this section is to quantitatively understand the inefficiency
that results from the selfish behavior of these network builders.

19.2.1 Model

Players in the local connection game are identified with nodes in a graph G on which
the network is to be built. A strategy for player u is a set of undirected edges that u
will build, all of which have u as one endpoint. Given a strategy vector S, the set of
edges in the union of all players’ strategies forms a network G(S) on the player nodes.
Let dists(u, v) be the shortest path (in terms of number of edges) between u and v in
G(S). We use dist(u, v) when S is clear from context. The cost of building an edge is
specified by a single parameter, «. Each player seeks to make the distances to all other
nodes small, and to pay as little as possible. More precisely, player u’s objective is to
minimize the sum of costs and distances an, + ), dist(u, v), where n,, is the number
of edges bought by player u.

Observe that since edges are undirected, when a node u buys an edge (u, v), that
edge is also available for use from v to u, and in particular, is available for node v.
Thus, at Nash equilibrium at most one of the nodes u and v pay for the connecting
edge (u, v). Also, since the distance dist(u, v) is infinite whenever u and v are not
connected, at equilibrium we must have a connected graph. We say that a network
G = (V, E) is stable for a value « if there is a stable strategy vector S that forms G.

The social cost of a network G is SC(G) = Zu# dist(u, v) + «|E|, the sum of
players’ costs. Note that the distance dist(u, v) contributes to the overall quality twice
(once for u and once for v). We will be comparing solutions that are stable to those
that are optimal under this measure.

19.2.2 Characterization of Solutions and the Price of Stability

‘We now characterize the structure of an optimal solution as a function of . A network
is optimal or efficient if it minimizes the social cost SC(G).

Lemma 19.1 [f o > 2 then any star is an optimal solution, and if o < 2 then
the complete graph is an optimal solution.

PROOF Consider an optimal solution G with m edges. We know m > n — 1;
otherwise, the graph would be disconnected, and thus have an infinite cost. All
ordered pairs of nodes not directly connected by an edge must have a distance
of at least 2 from each other, and there are n(n — 1) — 2m such pairs. Adding
the remaining 2m pairs with distance 1 yields am + 2n(n — 1) — 4m + 2m =
(¢ —2)m + 2n(n — 1) as a lower bound on the social cost of G. Both a star and
the complete graph match this bound. Social cost is minimized by making m as
small as possible when o > 2 (a star) and as large as possible when o < 2 (a
complete graph). DO

Both the star and the complete graph can also be obtained as a Nash equilibrium for
certain values of «, as shown in the following lemma.
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Lemma 19.2 If o > 1 then any star is a Nash equilibrium, and if o < 1 then
the complete graph is a Nash equilibrium.

PROOF First suppose @ > 1, and consider a star. It turns out that any assignment
of edges to incident players corresponds to a Nash equilibrium, but for this result,
we need only demonstrate a single solution. In particular, consider the strategy in
which player 1 (the center of the star) buys all edges to the other players, while the
remaining n — 1 leaf players buy nothing. Player 1 has no incentive to deviate, as
doing so disconnects the graph and thus incurs an infinite penalty. Any leaf player
can deviate only by adding edges. For any leaf player, adding k edges saves k
in distance but costs ak, and thus is not a profitable deviation. Thus the star is a
Nash equilibrium.

Now suppose @ < 1. Consider a complete graph, with each edge assigned to
an incident player. A player who stops paying for a set of k edges saves ok in
cost, but increases total distances by k, so this outcome is stable. O

There are other equilibria as well, some of which are less efficient (see Exercise
19.6). However, these particular Nash equilibria, in conjunction with the above optimal
solutions, suffice to upper bound the price of stability.

Theorem 19.3 [fa > 2 or o < 1, the price of stability is I. For 1 < «a < 2, the
price of stability is at most 4/3.

PROOF The statements about « < 1 and « > 2 are immediate from Lemmas
19.1and 19.2. When 1 < a < 2, the star is a Nash equilibrium, while the optimum
structure is a complete graph. To establish the price of stability, we need to compute
the ratio of costs of these two solutions. The worst case for this ratio occurs when
o approaches 1, where it attains a value of

2n(n — 1) —2(n—1)  4n*> —6n+2
2n(n — 1) —n(n —1)/2  3n2—3n

< 4/3.

O

Exercise 19.3 shows that the complete graph is the unique equilibrium for o < 1,
so we also have that the price of anarchy is 1 in this range. We now address the price
of anarchy for larger values of «.

19.2.3 The Price of Anarchy

The first bound on the price of anarchy for this game was given by Fabrikant et al.
(2003), and involves two steps: bounding the diameter of the resulting graph, and using
the diameter to bound the cost. We begin with the second step.

Lemma 19.4  If a graph G at Nash equilibrium has diameter d, then its social
cost is at most O(d) times the minimum possible cost.
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PROOF The cost of the optimal solution is at least Q(an + n2), as we need to buy
a connected graph, which costs at least (n — 1)«, and there are Q(n?) distances,
each of which is at least 1. To bound the quality of the solution, consider the
distance costs and edge costs separately. The distance cost is at most n2d, and
thus is at most d times the minimum possible.

We now examine edge costs. First we consider cut edges, those edges whose
removal disconnects G. There are at most n — 1 cut edges, so the total cost of
all cut edges is at most a(n — 1), which in turn is at most the optimal solution
cost. Now consider the set of all noncut edges paid for by a vertex v. We will
argue that there are O(nd/a) such edges, with cost O(dn) for node v, and thus
the total cost of all noncut edges is O (dn?). This will establish that the cost of G
is O(an + dn?), completing the proof.

Pick a node u, and for each edge e = (u, v) paid for by node u, let V, be the
set of nodes w, where the shortest path from u to w goes through edge e. We
will argue that the distance between nodes u and v with edge e deleted is at most
2d. Thus deleting e increases the total distance from u to all other nodes by at
most 2d|V,|. Since deleting the edge would save « in edge costs and G is stable,
we must have that o < 2d|V,|, and hence |V,| > «/2d. If there are at least o/2d
nodes in each V,, then the number of such edges adjacent to a node v must be at
most 2dn /a, as claimed.

We now bound the distance between nodes u and v with edge e deleted.
Consider Figure 19.1, depicting a shortest path avoiding edge e. Let ¢’ = (1, v')
be the edge on this path entering the set V,. The segment P, of this path from u
to node u’ is the shortest path from u to u” as u’ ¢ V,, and hence deleting e does
not affect the shortest path. So P, is at most d long. The segment P, from v’ to v
is at most d — 1 long, as P, U e forms the shortest path between u and v’. Thus
the total length is at most 2d. O

Using this lemma, we can bound the price of anarchy by O (/a).

Theorem 19.5 The diameter of a Nash equilibrium is at most 2./a, and hence
the price of anarchy is at most O(\/a).

PROOF From Lemma 19.4, we need only prove that for any nodes u# and v,
dist(u, v) < 2+/a. Suppose for nodes u and v, dist(u, v) > 2k, for some k. The

Figure 19.1. Path P,, (U, v) P, is the u—v shortest path after edge e = (u, v) is deleted.
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Figure 19.2. Nodes uv and v that are at maximum distance d apart. B is the set of nodes at
most d' = (d — 1)/4 away from node u, and A,, is the set of nodes whose shortest path leaves
B atw.

main observation is that by adding the edge (u, v), the node u would pay « and
improve her distance to the nodes on the second half of the u — v shortest path
by 2k — 1)+ 2k —3) +--- + 1 =k>. So if dist(u, v) > 2/a, node u would
benefit from adding the edge (u, v), a contradiction. O

We now show an O(1) bound on the price of anarchy that was given by Lin (2003)
(and independently also by Albers et al., 2006) for @ = O(/n).

Theorem 19.6 The price of anarchy is O(1) whenever a is O(y/n). More gen-
erally, price of anarchy is O(1 + a//n).

PROOF We again use Lemma 19.4, so all we have to do is improve our bound
on the diameter d. Consider nodes u and v with dist(u,v) =d. Letd = |(d —
1)/4] and let B be the set of nodes at most d’ away from u, as shown on
Figure 19.2. Consider how the distance d(v, w) changes for nodes w € B by
adding edge (v, u). Before adding the edge dist(v, w) > d — d’. After adding
(v, u), the distance decreases to at mostd’ + 1. Thus v saves at least (d — 2d’ — 1)
in distance to all nodes in B, and hence would save at least (d — 2d’ — 1)|B| >
(d — 1)| B|/2 in total distance costs by buying edge (v, u). If G is stable, we must
have (d — 1)|B|/2 < «.

For a node w € B let A,, contain all nodes ¢ for which the u—t shortest path
leaves the set B after the node w. Note that if A,, is nonempty, then w must
be exactly at distance d’ from u. Therefore, node u would save |A,|(d — 1)
in distance cost by buying edge (u#, w). If the network is at equilibrium, then
we must have that |A,|(d" — 1) < «. There must be a node w € B that has
|Ay| > (n — |B])/|B|. Combining these, we get that

d -1 —|BD/IB| < a.
This implies that |B|(1 + «/(d’ — 1)) > n, and since &« > d > d’,
|B| > n(d —1)/2a.
Combining this with the previous bound of & > (d — 1)|B|/2 yields
a>(d—1)|B|/2>(d— Dnd —1)/4a > nd —1)*/a.
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Thus a®> > n(d’ — 1)> andhenced < 4(d' + 1) + 1 < 4a//n + 9, which implies
the claimed bound by Lemma 19.4. O

19.3 Potential Games and a Global Connection Game

In this section we introduce a broad class of games known as potential games. This class
encompasses a number of natural and well-studied network-based games. As we will
see, potential games possess many nice properties; pure equilibria always exist, best
response dynamics are guaranteed to converge, and the price of stability can be bounded
using a technique called the potential function method. Our motivating example for
this class of games is a network formation game called the global connection game,
which was discussed in Chapter 17. We begin by defining this game, and present some
theorems about pure equilibria and the price of stability. We then introduce potential
games, and provide generalized results for this broader framework.

The network formation game discussed in Section 19.2 is local in the sense that
a player can build links to other nodes, but has no direct means for affecting distant
network structure. Such might be the case with social networks or peering relationships
in a digital network. The global connection game, in contrast, models players who
make global structural decisions; players may build edges throughout the network, and
thus consider relatively complex strategies. This game might be more appropriate for
modeling the actual construction and maintenance of large-scale physical networks.

Beyond the varying scope of players’ strategies, there are two additional features
that differentiate these network formation games. First, in exchange for the global
connection game’s broader strategy space, we consider a relatively simplified player
objective function. In particular, we assume that players are unconcerned with their
distance to other nodes in the network, and instead want only to build a network that
connects their terminals as cheaply as possible. The second notable distinction is that
the global connection game supports cooperation, in that multiple players may share
the cost of building mutually beneficial links. In the local connection game, an edge
might benefit multiple players, and yet the edge’s cost is always covered fully by one
of the two incident players. We now give a formal description of the global connection
game.

19.3.1 A Global Connection Game

We are given a directed graph G = (V, E) with nonnegative edge costs c, for all edges
e € E. There are k players, and each player i has a specified source node s; and sink
node #; (the same node may be a source or a sink for multiple players). Player i ’s goal
is to build a network in which ¢, is reachable from s;, while paying as little as possible
to do so. A strategy for player i is a path P; from s; to ; in G. By choosing P;, player
i is committing to help build all edges along P; in the final network. Given a strategy
for each player, we define the constructed network to be U; P;.

It remains to allocate the cost of each edge in this network to the players using it,
as this will allow players to evaluate the utility of each strategy. In principle, there are
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a vast number of possible cost-sharing mechanisms, each of which induces a distinct
network formation game. We will briefly touch on this large space of games at the
end of the section, but for now, our primary focus will be on a single cost-sharing
mechanism with a number of nice properties, that is both simple and easy to motivate.

In particular, we consider the mechanism that splits the cost of an edge evenly among
all players whose path contains it. More concretely, if k, denotes the number of players
whose path contains edge e, then e assigns a cost share of ¢,/ k. to each player using
e. Thus the total cost incurred by player i under a strategy vector S is given by

cost;(S) = Y _ co/ k.

eeh;

Note that the total cost assigned to all players is exactly the cost of the constructed
network. This equal-division mechanism was suggested by Herzog et al. (1997), and
has a number of basic economic motivations. Moulin and Shenker prove that this
mechanism can be derived from the Shapley (2001) value, and it can be shown to
be the unique cost-sharing scheme satisfying a number of natural sets of axioms (see
Feigenbaum et al., 2001; Moulin and Shenker, 2001). We refer to it as the fair or
Shapley cost-sharing mechanism. The social objective for this game is simply the cost
of the constructed network.

One may view this game as a competitive version of the generalized Steiner tree
problem; given a graph and pairs of terminals, find the cheapest possible network
connecting all terminal pairs. Indeed, an optimal generalized Steiner tree is precisely
the outcome against which we will compare stable solutions in evaluating the efficiency
of equilibria. This connection highlights an important difference between this game
and routing games; in routing games such as those discussed in Chapter 18, players
are sensitive to congestion effects, and thus seek sparsely used paths. But in the global
connection game, as with the Steiner forest problem, the objective is simply to minimize
costs, and thus sharing edges is in fact encouraged.

The two examples in Chapter 17 provide a few useful observations about this game.
Example 17.2 (see Figure 19.3(a)) shows that even on very simple networks, this game
has multiple equilibria, and that these equilibria may differ dramatically in quality.
There are two equilibria with costs k and 1 respectively. Since the latter is also optimal
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Figure 19.3. An instance of the global connection game with price of anarchy k (a) and an
instance with price of stability Hy (b).
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solution, the price of anarchy is k, while the price of stability is 1. It is not hard to show
that the price of anarchy can never exceed k on any network (see Exercise 19.9), and
thus this simple example captures the worst-case price of anarchy. Our primary goal
will be to bound the price of stability in general.

Example 17.3 (see Figure 19.3(b)) shows that the price of stability can indeed
exceed 1; this network has a unique Nash equilibrium with cost Hy, the kth harmonic
number, while the optimal solution has a cost of 1 4 €. Thus, the price of stability
on this network is roughly Hy. Our aim is to prove that pure equilibria always exist
and provide an upper bound the price of stability. Both of these results make use of a
potential function, which we will formally introduce in Section 19.3.2.

Consider an instance of the global connection game, and a strategy vector S =
(Py, Py, ..., P) containing an s; —t; path for each player i. For each edge e, define a
function W,(S) mapping strategy vectors to real values as

Ve (S) = ce - Hi,

where k. is the number of players using edge e in S, and H; = Z];':l 1/j is the
kth harmonic number. Let W(S) = >, W,(S). While this function does not obviously

capture any important feature of our game, it has the following nice property.

Lemma 19.7 Let S = (P, P», ..., Py), let P!/ # P; be an alternate path for
some player i, and define a new strategy vector S' = (S_;, P!). Then

W(S) — W(S) = ui(S) — ui(S).

PROOF This lemma states that when a player i changes strategies, the corre-
sponding change in W(-) exactly mirrors the change in i’s utility. Let k., be the
number of players using e under S. For any edge e that appears in both or neither
of P; and P/, the cost paid by i toward e is the same under S and §’. Likewise,
W, (-) has the same value under S and S’. For an edge e in P; but not in P/, by
moving from S to §’, i saves (and thus increases her utility by) c./k., which
is precisely the decrease in W,(-). Similarly, for an edge e in P/ but not in P;,
player i incurs a cost of ¢,/(k, 4+ 1) in switching from S to S’, which matches
the increase in W,(-). Since W(-) is simply the sum of W,(-) over all edges, the
collective change in player i’s utility is exactly the negation of the change in
v(). O

We also note that W(S) is closely related to cost(S), the cost of the network generated
by S. More precisely, consider any edge e used by S. The function W, (S) is at least c,
(any used edge is selected by at least 1 player), and no more than H;c, (there are only
k players). Thus we have

Lemma 19.8 cost(S) < W(S) < Hycost(S).

These two lemmas are used to prove the following two theorems, which will follow
from Theorems 19.11, 19.12, and 19.13.
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Theorem 19.9 Any instance of the global connection game has a pure Nash
equilibrium, and best response dynamics always converges.

Theorem 19.10  The price of stability in the global connection game with k
players is at most Hy, the kth harmonic number.

Since the proofs of these two results actually apply to a much broader class of games
(i.e., potential games), we now introduce these games and prove the corresponding
results in this more general context.

19.3.2 Potential Games and Congestion Games

For any finite game, an exact potential function ® is a function that maps every
strategy vector S to some real value and satisfies the following condition: If § =
(S1, 82, ..., 8k), S] # S; is an alternate strategy for some player i, and §" = (S_;, S)),
then ®(S) — ®(S’) = u;(S") — u;(S). In other words, if the current game state is S, and
player i switches from strategy S; to strategy S/, then the resulting savings i incurs
exactly matches the decrease in the value of the potential function. Thus Lemma 19.7
simply states that W is an exact potential function for the global connection game.

It is not hard to see that a game has at most one potential function, modulo addition
by a constant. A game that does possess an exact potential function is called an exact
potential game. For the remainder of this chapter, we will drop the word “exact”
from these terms (see Exercise 19.13 for an inexact notion of a potential function). A
surprising number of interesting games turn out to be potential games, and this structure
has a number of strong implications for the existence of and convergence to equilibria.

Theorem 19.11 Every potential game has at least one pure Nash equilibrium,
namely the strategy S that minimizes ®(S).

PROOF Let ® be a potential function for this game, and let S be a pure strategy
vector minimizing ®(S). Consider any move by a player i that results in a new
strategy vector §’. By assumption, ®(S") > ®(S), and by the definition of a po-
tential function, u;(S") — u;(S) = ®(S) — O(S’). Thus i’s utility can not increase
from this move, and hence S is stable. O

Going one step further, note that any state S with the property that ® cannot be
decreased by altering any one strategy in S is a Nash equilibrium by the same argument.
Furthermore, best response dynamics simulate local search on ®; improving moves
for players decrease the value of the potential function. Together, these observations
imply the following result.

Theorem 19.12 [n any finite potential game, best response dynamics always
converge to a Nash equilibrium.

Note that these two results imply Theorem 19.9.
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A less abstract characterization of potential games can be found in a class of games
called congestion games (Rosenthal, 1973). A congestion game has k players and n
resources. Player i has a set S; of allowable strategies, each of which specifies a subset
of resources. Each resource j has a load-dependent cost function c;(x), indicating the
cost incurred by any player i whose chosen strategy includes resource j if there are x
such players in total. The total cost charged to player i who chooses a strategy S; is
simply the sum of the costs incurred from each resource in S;. Thus if the total load
on link j is x;, then i pays Zje s, ¢j(x;). The Global Connection game is clearly a
congestion game; edges are resources, s; — t; paths are allowable strategies for player
i, and the cost functions are c.(x) = c./x.

Rosenthal (1973) proved that any congestion game is a potential game (see Exercise
19.15). Monderer and Shapley (1996) proved the converse; for any potential game,
there is a congestion game with the same potential function.

We now present a generic upper bound on the price of stability for an arbitrary
potential game.

19.3.3 The Potential Function Method and the Price of Stability

Suppose that we have a potential game G with a potential function ®(.S) and social cost
function c(S). If ®(S) and c(S) are similar, then the price of stability must be small.
We make this precise in the following theorem.

Theorem 19.13  Suppose that we have a potential game with potential function
@, and assume further that for any outcome S, we have

cost(S)

< ®(S) < B - cost(S)

for some constants A, B > 0. Then the price of stability is at most AB.

PROOF Let SV be a strategy vector that minimizes ®(S). From Theorem 19.11,
SV is a Nash equilibrium. It suffices to show that the actual cost of this solution
is not much larger than that of a solution S$* of minimal cost. By assumption,
we have that %SN) < ®(SV). By the definition of SV, we have that ®(SV) <
®(S5*). Finally, the second inequality of our assumption implies that ®(§*) < B -
cost(S*). Stringing these inequalities together yields cost(SV) < AB - cost(S*),
as desired. O

Note that this result, taken together with Lemma 19.8, directly implies Theorem
19.10. This technique for bounding the price of stability using a potential function is
known as the potential function method.

In general, outcomes that minimize the potential function may not be the best Nash
equilibrium, and thus this bound is not always tight (see Exercise 19.14). However,
in the case of the global connection game, we have seen that the price of stability is
at least Hy. Thus, for this class of games, the bound given by the potential function
method is the best possible.
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Notice that we have essentially already seen the potential function method used in
the nonatomic selfish routing game of Chapter 18. For this routing game, all equilibria
have the same social value, and hence the price of anarchy and the price of stability
are the same. Because of this, Theorem 18.16 is phrased as a statement about the price
of anarchy, but we can still view this result as an application the potential function
method. In the last section of this chapter, we will see yet another application of this
technique for a potential game that models competitive facility location.

‘We have seen that potential games have pure equilibria, and that the price of stability
can be bounded via the potential function method. We now consider the complexity of
finding these equilibria in general potential games.

19.3.4 Finding Nash Equilibria in Potential Games

Theorem 19.12 provides an algorithmic means of reaching pure equilibria in potential
games. Unfortunately, this theorem makes no claim regarding the rate of this con-
vergence. In some games, best response dynamics always converges quickly, but in
many games it does not. In some games, the potential function ® can be minimized in
polynomial time, but in others the minimization problem is NP-hard. To get a better
handle on the complexity of finding pure equilibria in potential games, we consider the
closely related problem of finding local optima in optimization problems.

The class of Polynomial Local Search problems (PLS) was defined by Johnson
et al. (1988) as an abstract class of local optimization problems. First, let us define a
general optimization problem (say a minimization problem) as follows. We have a set
of instances /, and for each instance x € I a set of feasible solutions F'(x) and a cost
function ¢, (s) defined on all s € F(x). We also have an oracle (or a polynomial-time
algorithm) that takes an instance x and a candidate solution s, and checks whether s
is a feasible solution (s € F(x)). If it is, the oracle computes the cost of that solution,
¢x(s). The optimization problem is to find a solution s € F(x) with minimum cost ¢, (s)
for a given instance x € [.

To define a local optimization problem, we must also specify a neighborhood
N,(s) C F(x)foreachinstance x € I and each solutions € F(x). A solutions € F(x)
is locally optimal if ¢ (s) < c¢,(s") forall s" € N, (s). The local optimization problem is
to find a local optimum s € F(x) for a given instance x € I. A local optimization prob-
lem is in PLS if we have an oracle that, for any instance x € I and solution s € F(x),
decides whether s is locally optimal, and if not, returns s’ € N, (s) with ¢,(s") < ¢, (s).

Fabrikant et al. (2004) show that finding a Nash equilibrium in potential games
is PLS-complete, assuming that the best response of each player can be found in
polynomial time. To see that the problem belongs to PLS, we will say that the neighbors
N,(s) of a strategy vector s are all the strategy vectors s’ that can be obtained from
s by a single player changing his or her strategy. By definition, a potential function
® is locally optimal for cost function c,(s) = ®(s) if and only if it is a pure Nash
equilibrium, so finding a pure Nash equilibrium is in PLS.

A problem is PLS-complete if it is in PLS and there is a polynomial time reduction
from all other problems in PLS such that local optima of the target problem correspond
to local optima of the original one. Since the introduction of this class in Johnson et al.
(1988), many local search problems have been shown to be PLS-complete, including the
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weighted versions of satisfiability (Krentel, 1989). The weighted satisfiability problem
is defined by a formula in conjunctive normal form C; A ... A C,,, with a nonnegative
weight w; for each clause C;. Solutions s are truth assignments of variables, and the
associated cost c(s) is the sum of the weights of the unsatisfied clauses. The neighbors
of a truth assignment s are the assignments obtained by flipping a single variable in s.

Here we show via a reduction from this weighted satisfiability problem that finding
a pure Nash equilibrium in potential games is PLS complete.

Theorem 19.14 Finding a pure Nash equilibrium in potential games, where
best response can be computed in polynomial time, is PLS complete.

PROOF We have argued that finding a pure Nash equilibrium in such games is
in PLS. To see that the problem is PLS complete, we use a reduction from the
weighted satisfiability problem. Consider a weighted satisfiability instance with
k variables xi, ..., xx, and n clauses Cy, ..., C, with weight w; for clause C;.
Our congestion game will have one player for each variable, and one resource
for each clause. Player i, associated with variable x;, has two possible strategies:
it can either select the set of resources S; consisting of all clauses that contain
the term x;, or S;, which includes all clauses containing the term ;. Selecting S;
corresponds to setting x; to false, while selecting S; corresponds to setting x; to
true.

The main observation is that a clause C; with k; literals is false if and only if
the corresponding element has congestion k;. Let C; be a clause with k; literals
and weight w;. We define the congestion cost of the element j corresponding
to the clause C; as ¢;(§) = 0if & < k; and c;(k;) = w;. For the strategy vector
corresponding to the truth assignment s, the potential function has value ®(s) =
> i€ (¢;), where ; is the number of false literals in C;. The weight of assignment
s is exactly ®(s), and thus the equilibria of this game are precisely the local optima
of the satisfiability problem. O

19.3.5 Variations on Sharing in the Global Connection Game

We now return to our motivating example, the global connection game. By definition,
this game requires that the cost of any built edge be shared equally among all players
using that edge. This sharing rule is natural, arguably fair, and as we have seen, implies
a number of nice properties. But is this really the best possible sharing rule? Could
perhaps another sharing rule induce even better outcomes? We can view this question
as a problem of mechanism design, although here we use the term more broadly than in
Chapter 9; instead of seeking to elicit “truthful” behavior, we simply want to guarantee
that stable outcomes exist and are reasonably efficient.

If we want to design games to induce better outcomes, we must first decide to what
extent we will allow ourselves, as mechanism designers, to alter the game. After all,
suppose that we define a game in which players receive a large penalty for taking any
path that does not conform with a particular optimal solution. Such a game has pure
equilibria, and the price of anarchy is trivially 1. But intuitively, this is not a satisfying
solution; this game is too restrictive and fails to capture the decentralized spirit of our
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earlier network formation games. Therefore, our first hurdle is to specify the class of
“reasonable” games that are open for consideration.

To this end, Chen et al. (2006) introduce the class of cost-sharing games. This class
includes the global connection game, as well as similar games with other cost-sharing
rules. A cost-sharing game is played on a graph with edge costs and terminals s;, #; for
each player i. A strategy for player i is an s; — #; path. Given a strategy vector S, cost
shares are assigned to players on an edge-by-edge basis as specified by a cost-sharing
method &, for each edge e. In particular, if S, is the set of players whose path includes
e under S, then £,(i, S,) > 0 is cost share assigned to i for e. The total cost incurred by
player i is the sum of i’s cost shares. We require that any cost-sharing method satisfy
two basic properties:

e Fairness: For all i, ¢ we have &,(i, S.) = 0ifi ¢ S,.
* Budget-balance: For all e we have ), &(i, S.) = c..

A cost-sharing scheme specifies a cost-sharing method per edge given a network,
a set of players, and a strategy vector. This definition allows cost-sharing schemes to
make use of global information, and thus we also consider the special case of oblivious
cost-sharing schemes, in which cost-sharing methods depend only on ¢, and S,. Note
that the Shapley network formation game is an oblivious cost-sharing game, with the
cost-sharing method &.(i, S.) = c./|S.| fori € S,.

We now return to our question regarding the relative efficiency of the Shapley
scheme. In particular, we will show that nonoblivious cost-sharing schemes can provide
far better guarantees than the Shapley scheme.

Theorem 19.15 For any undirected network in which all players seek to reach
a common sink, there is a nonoblivious cost-sharing scheme for which the price
of anarchy is at most 2.

PROOF We define a nonoblivious cost-sharing scheme for which players at equi-
librium may be viewed as having simulated Prim’s MST heuristic for approxi-
mating a min cost Steiner tree. Since this heuristic is 2-approximation algorithm,
such a scheme suffices. More concretely, if ¢ is the common sink, we order players
as follows. Let player 1 be a player whose source s is closest to ¢, let player 2
be a player whose source s; is closest to {z, s;}, and so on. Define a cost-sharing
method that assigns the full cost of e to the player in S, with the smallest index.
Since player 1 pays fully for her path regardless of the other players’ choices, at
equilibrium player 1 must choose a shortest path from s; to ¢, and inductively, the
remaining players effectively simulate Prim’s algorithm as well. O

On the other hand, if we restrict our attention to oblivious schemes, Chen, Rough-
garden, and Valiant prove that for general networks, we cannot do better than the
Shapley cost-sharing scheme in the worst case. More precisely, they argue that any
oblivious cost-sharing scheme either fails to guarantee the existence of pure equilibria
or has a price of stability that is at least H; for some game. Thus we have an answer
to our original question; while there may be nonoblivious schemes that perform better
than Shapley cost-sharing, no oblivious scheme offers a smaller price of stability in
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the worst case. See the notes on this chapter (Section 19.5.2) for a brief discussion of
research concerning other cost-sharing approaches.

19.4 Facility Location

In the models we have considered so far, players construct networks so as to achieve
certain connectivity-based goals. Intuitively, these goals are meant to capture players’
desires to provide service for some implicit population of network users. Given this per-
spective, we might then ask what happens when we instead view players as financially
motivated agents; after all, service providers are primarily concerned with maximizing
profits, and only maintain networks for this purpose. This suggests a model in which
players not only build networks but also charge for usage, while network users spur
competition by seeking the cheapest service available.

We will consider here a pricing game introduced by Vetta (2002) that is based on the
facility location problem. In the facility location problem, we want to locate k facilities,
such as Web servers or warehouses, so as to serve a set of clients profitably. Our focus
here will be to understand the effect of selfish pricing on the overall efficiency of the
networks that players form.

We first present Vetta’s competitive facility location problem, in which players place
facilities so as to maximize their own profit. We then show that this facility location
game is a potential game, and prove that the price of anarchy for an even broader class
of games is small.

19.4.1 The Model

Suppose that we have a set of users that need a service, and k service providers. We
assume that each service provider i has a set of possible locations A; where he can
locate his facility.

Define A = U; A; to be the set of all possible facility locations. For each location
s; € A; there is an associated cost c¢j,, for serving customer j from location s;. We
can think of these costs as associated with edges of a bipartite graph that has all users
on one side and all of A on the other, as shown on Figure 19.4. A strategy vector

4
A
/% = %\
Possible
facilities
. /i

s
)

Figure 19.4. The bipartite graph of possible locations and clients. Selected facilities are marked
in black.
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s = {s1, ..., S} can be thought of as inducing a subgraph of this graph consisting of
the customers and the selected location nodes (marked as black on Figure 19.4).

Our goal is to maximize social welfare, rather than simply minimizing the cost of
the constructed network. We assume that customer j has a value 7; for service, and
gathers 7r; — p benefit by receiving service at a price p < ;. Locating a facility s; is
free, but that service provider i must pay cjy, to serve client j from location s;. Doing
so generates a profit of p — cj,,. If provider i services customer j from location s;,
then this arrangement creates a social value (or surplus) of 7; — cjs,, the value ; of
service minus the cost ¢, at which the service is provided. Note that this social surplus
is independent of the price p = p;; charged; varying p;; simply redistributes welfare
between the customer and the provider. We define the social welfare V(S) to be the
total social value over all providers and customers.

To simplify notation, we assume that w; > ¢, forall j, i, and s; € A;. To see that
this requires no loss of generality, note that decreasing cj, to be at most 7r; does not
change the value of any assignment: when 7; < cj,, customer j cannot be served from
location s;, while ; = cj, allows us to serve customer j from location s; at cost. In
either case, the assignment of serving client j from facility s; results in O social value.

To complete the game, we must specify how prices are set and assignments are
determined. Given a strategy vector s, we assume that each customer is assigned to
a facility that can serve for the lowest cost. The price p;; charged to a customer j
using player i’s facility s; is the cost of the second cheapest connection available to
J» 1.e., miny; ¢z . Intuitively, this is the highest price i could expect to get away with
charging j; charging any more would give some player i’ an incentive to undercut i.

Indeed, we can construct an equivalent interpretation of this game in which prices are
selected strategically. Consider a three-stage game where both providers and customers
are strategic agents. In the first stage, providers select facility locations. In the second
stage, providers set prices for users. And, in the last stage, users select a provider for
service, and pay the specified price.

As we saw in Chapter 1, subgame perfect equilibrium is a natural solution concept for
multistage games. We will use here a further refinement of this concept, the trembling
hand perfect equilibrium for extensive form games (see Mas-Colell et al., 1995).
Assume that with probability € > 0, each player picks a strategy chosen uniformly at
random, and chooses a best strategy with the remaining (1 — €) probability. We use the
notion of subgame perfect equilibrium for this e-perturbed game. A trembling hand
perfect equilibrium is an equilibrium that can be reached as the limit of equilibria in
the e-perturbed game as € approaches 0. This stronger notion of stability is required
to prevent providers from offering unprofitably low prices and thereby forcing other
providers to artificially lower their own prices.

19.4.2 Facility Location as a Potential Game

We start by proving that the facility location game is a potential game.

Theorem 19.16 The facility location game is a potential game with social value
V (s) as the potential function.
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PROOF We need to argue that if a provider i changes her selected location, then
the change in social welfare V (s) is exactly the change in the provider’s welfare.
To show this, we imagine provider i choosing to “drop out of the game” and show
that the change in social welfare V (s) is exactly i’s profit.

If provider i “drops out,” each client j that was served by provider i switches
over to his second best choice. Recall that p;; is exactly the cost of this choice.
Thus the client will be served at cost p;; rather than cj,, so the increase in cost is
pij — Cjs;» exactly the profit provider i gathers from j.

To prove the statement about provider i changing his strategy, we can think
of the change in two steps: first the provider leaves the game, and then reenters
with a different strategy. The change in social welfare is the difference between
the profit of provider i in the two strategies. O

Corollary 19.17 There exists a pure strategy equilibrium, and furthermore, all
efficient outcomes of the facility location game are stable. Thus, the price of
stability is 1. Finally, best response dynamics converge to an equilibrium, but this
equilibrium may not be socially optimal.

Our next goal is to prove that the price of anarchy for this facility location game is
small. However, it turns out that the proof applies to a much broader class of games,
which we present now.

19.4.3 Utility Games

Vetta (2002) introduced the facility location game as one example of a large class
of games called utility games. In a utility game, each player i has a set of available
strategies A;, which we will think of as locations, and we define A = U; A;. A social
welfare function V (S) is defined forall S € A. Observe that welfare is purely a function
of the selected locations, as is the case with the facility location game. In defining the
socially optimum set, we will consider only sets that contain one location from each
strategy set A;. However, various structural properties of the function V(S) will be
assumed for all § € A. For a strategy vector s, we continue to use V (s) as before, and
let «;(s) denote the welfare of player i. A game defined in this manner is said to be a
utility game if it satisfies the following three properties.

(i) V(S) is submodular: for any sets S C S’ C A and any element s € A, we have V(S +
5) — V(S) = V(S +s) — V(5). In the context of the facility location game, this states
that the marginal benefit to social welfare of adding a new facility diminishes as more
facilities are added.

(ii) The total value for the players is less than or equal to the total social value: ) o;(s) <
V(s).
(iii) The value for a player is at least his added value for the society: «;(s) > V(s) — V(s —

S,’).

A utility game is basic if property (iii) is satisfied with equality, and monotone if for
all S € §" C A, V(S) < V().
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To view the facility location game as a utility game, we consider only the providers
as players. We note that the social welfare V(S) = )" j(n j —minges cjq) is indeed
purely a function of the selected locations.

Theorem 19.18 The facility location problem is a monotone basic utility game.

PROOF Property (ii) is satisfied essentially by definition, and we used the equal-
ity of property (iii) property in proving Theorem 19.16. To show property (i),
notice that adding a new facility decreases the cost of serving some of the clients.
The magnitude of this decrease can only become smaller if the clients are already
choosing from a richer set of facilities. Finally, adding a facility cannot cause
the cost of serving a client to increase, and thus the facility location game is
monotone. [0

19.4.4 The Price of Anarchy for Utility Games

Since the facility location game is a potential game with the social welfare as the
potential function, the price of stability is 1. In fact, this applies for any basic utility
game (any utility game with «;(s) = V(s) — V(s — s;) for all strategy vectors s and
players i). Unfortunately, the increased generality of utility games comes at a cost;
these games are not necessarily potential games, and indeed, pure equilibria do not
always exist. However, we now show that for monotone utility games that do possess
pure equilibria (such as the facility location game), the price of anarchy is at most 2.

Theorem 19.19 For all monotone utility games the social welfare of any pure
Nash equilibrium is at least half the maximum possible social welfare.

PROOF Let S be the set of facilities selected at an equilibrium, and O be the set
of facilities in a socially optimal outcome. We first note that V(0O) < V(S U O)
by monotonicity. Let O’ denote the strategies selected by the first i players in the
socially optimal solution. That is, 0° = @, 0! = {0,}, ..., O = 0. Now

V(0)=V($) S V(SUO) = V(S)= ) [V(SUO) - V(SUO L.
i=0

By submodularity (property (i))
VSUO)—VESUO™) < V(S+o0; —s)— V(S —s)
for all i. Using property (iii), we can further bound this by «; (S + 0; — s;). Since

S is an equilibrium, «; (S + 0; — 5;) < o;(S). Together these yield

V(0) = V(S) S V(O US) = V(S) <Y ai(S).

1

Finally, property (ii) implies that ), ;(S) < V(§),so V(0) < 2V(S), and hence
the price of anarchy is at most 2. 0O
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19.4.5 Bounding Solution Quality without Reaching an Equilibrium

For any monotone basic utility game, one can also bound the quality of the solution
without assuming that players reach an equilibrium, as was shown in a sequence of
two papers by Mirrokni and Vetta (2004) and Goemans et al. (2005).

Theorem 19.20 Consider an arbitrary solution in a monotone basic utility
game. Suppose that at each time step, we select a player at random and make a
best response move for that player. For any constant € > 0 the expected social
value of the solution after O(n) such moves is at least 1 /2 — € times the maximum
possible social value.!

PROOF Let S be a state, and O be an socially optimal strategy vector. We
will prove that the expected increase in social welfare in one step is at least
’ll(V(O) — 2V (S)), which implies the claimed bound after O(n) steps.

Let B; be the maximum possible increase in the value for player i. Thus the
expected increase in value is ,ll Y _; Bi. Selecting strategy o; is an available move,
so Bi = a;(S — s; + 0;) — «;(S), and by basicness, 8; > V(S —s; +0;) — V(S —
si) — o (S).

The rest of the proof mirrors the price of anarchy proof above. We have

V(0)—-V(S) =< Z[V(S —sito;)— V(S —s:)]
i=0
as before. We bound V(S 4 0; — s;) — V(S — s5;) < «;(S) + B;. Using this with
property (ii) yields

V(0) = V($) <Y (@(S)+B) <V + ) Bi.

Thus ), Bi = V(0) —2V(S), and the expected increase in V(S) is %(V(O) -
2V (S)). The difference V(O) —2V(S) is expected to decrease by a factor of
a- %) each step. After n/2 steps, the difference is expected to decrease by a

factor of e, and after log(e ~!)n steps shrinks to an € factor. O

19.5 Notes

19.5.1 Local Connection Game

Network formation games have a long history in the social sciences, starting with the
work of Myerson (1977, 1991). A standard example of such games can be found in
Jackson and Wolinsky (1996) (see Jackson (2006) for a more comprehensive survey).
These network formation games are often used to model the creation of social networks,
and aim to capture pairwise relations between individuals who may locally form direct
links to one another. In other contexts, these games might model peering relations

! The constant in the O(.) notation depends on loge .
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between pairs of Autonomous Systems (Johari et al., 2006; Fabrikant et al., 2003), or
bilateral contracts between systems as with P2P overlay networks (Chun et al., 2004;
Christin et al., 2004). Most network formation games in the economics literature use
a bilateral process, in which edges only form between two agents with the consent of
both parties, unlike the unilateral process of Section 19.2.

Jackson and Wolinsky (1996) examine the trade-off between efficient and stable
networks by studying various network formation games and specifying the conditions
under which some (or all) stable outcomes are socially efficient, as done in Section
19.2.2. Section 19.2.3 explores how efficient nonoptimal stable outcomes may be.

Corbo and Parkes (2005) study a bilateral variant of local connection game. In the
bilateral network formation game, two nodes must pay the o cost to form a connecting
edge. Thus edges represent bilateral agreements in which players agree to evenly
share the edge cost (which is effectively 2«). This contrasts with the unilateral edge
formation used in the local connection game. Otherwise, the games are the same;
players have the same strategy sets, and evaluate the resulting network in the same
manner.

Nash equilibria do not appear to be well-suited for modeling bilateral agreements;
for a graph to be stable, we need only ensure that no node wants to drop edges,
since a player cannot singlehandedly add an edge. For example, the empty graph is
always a Nash equilibrium in the bilateral game, and hence the price of anarchy is very
high.

Jackson and Wolinsky (1996) suggest using the notion of pairwise stable equilib-
rium; no user u wants to drop any adjacent edge ¢ = (u, v), and no pair of users u and
v wants to add the connecting edge (u, v). This stability concept is closely related to
a variant of Nash equilibrium in which we allow coalitions of two players to deviate
together (# and v may drop any subset of edges adjacent to them, and possibly add the
edge (u, v) connecting them, if this is beneficial to both players). This is the solution
concept used in the stable matching problem (see Chapter 10), where the natural devi-
ation for a matching that is not stable is by a “blocking pair’: a man and a woman who
prefer each other to their current partners.

The optimal network structure is the same as in the unilateral game with edge cost
2a. The proof of Theorem 19.1 can be modified to show that when « > 1, the star is
pairwise stable, and when o < 1 the complete graph is pairwise stable. Note that in
both cases, these networks are also efficient, so the price of stability is 1. One can also
extend the bounds of Lemma 19.4 and Theorems 19.5 and 19.6 to bound the quality of
a worst pairwise stable equilibrium (see Exercise 19.8).

Andelman et al. (2007) consider the effect of coalitions in the unilateral game. Recall
from Chapter 1 that a strong Nash equilibrium is one where no coalition has a joint
deviation that is profitable for all members. Andelman et al. show that when @ € (1, 2),
there is no stable network resisting deviations by coalitions of size 3, and also that
when o > 2, all strong Nash equilibria have cost at most twice the optimum, i.e., the
strong price of anarchy is at most 2.

There are many other natural and relevant variations to the discussed network
formation games. One important aspect of the model suggested by Jackson (2006) and
Jackson and Wolinsky (1996), is that nodes are not required to reach all other nodes
in the network. Instead, node u has a value w,,, for connecting to another node v, and
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this benefit decays exponentially with distance. In this game, pairwise stable equilibria
may not be connected.

Chun et al. (2004) introduce a variant of the unilateral network formation game
to model overlay networks. They allow the cost incurred by node u for adding a
directed edge (u, v) to depend upon v and the degree of v, thereby modeling some
congestion effects. The authors also extended the notion of distance beyond hop-count,
and consider restricting the set of possible connections available to each player. Using
Nash equilibria as their solution concept, they study the quantitative trade-offs between
cost, node degree, and path length in an experimental setting. Christin et al. (2004) also
use these models, and argue that using approximate (rather than exact) equilibria can
improve the predictive power of the model and accommodate small errors in modeling
and decision making.

Johari et al. (2006) introduced a related game for modeling bilateral contracts
between systems. In this game players form directed edges to carry traffic, and the
payments along the links are negotiated, in that players can make offers and demands.
Anshelevich et al. (2006) propose a variant of this model with fixed routing that
includes both directed links and symmetric peering links, and show that in this model,
there exists an efficient solution that is approximately stable in some sense.

Open Problems

We have given a bound of O(4/a) for the price of anarchy of the local connection
game, and improved this bound to O(1) for small . Also, Albers et al. (2006) proved
an O(1) bound for the case @ > 12nlogn (see also Exercise 19.7 for the case a > n?).
It is an open problem whether a constant bound holds for all values of «.

The local connection game is an extremely simple model of network formation. It
would be valuable to understand to what extent the price of anarchy bounds apply to
broader classes of games. Albers et al. (2006) extend the price of anarchy bound to
games where traffic (which affects distance costs multiplicatively) is not uniform, but
edge costs remain uniformly « as before. Unfortunately, these bounds depend on the
traffic weights, and are only O (1) when these weights are relatively small (n? Wyay < @).
Is there a natural characterization of all traffic patterns that support a constant price of
anarchy? And, can the price of anarchy results extend to models where edge costs vary
over the network?

As mentioned, Christin et al. (2004) argue that approximate equilibria are better
models of natural network formation. Can we extend our price of anarchy bounds to
approximate equilibria?

So far we have been concerned with the quality of equilibria, and did not consider
the network formation process. Does “natural” game play of these local connection
games converge to an equilibrium efficiently? Bala and Goyal (2000) show that in their
model, game play does converge to an equilibrium in some cases. Is this also true in
broader class of games? In cases when natural game play does not converge, or only
converges slowly, can one bound the quality of the solution after a “long enough” game
play, as we have seen in Section 19.4.5?

The network formation process of Bala and Goyal (2000) is very uniform, and
leads to networks with extremely simple structure (such as a cycle, star or wheel).
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Newman (2003) and Jackson and Rogers (2006) introduce more complex network-
formation process based on a random graph generation process that results in graphs
that have a number of real-world network properties, such as the power-law degree
distribution, clustering, etc. Unfortunately, this process is exogenous, and not really
based on personal incentives. One exciting open challenge is to develop an incentive-
based and endogenous model of network formation that generates more heterogenous
and realistic networks.

19.5.2 Potential Games and a Global Connection Game

The global connection game is related to a large body of work on cost-sharing (see
Feigenbaum et al., 2001; Herzog et al., 1997; and the references therein). Much of this
work is not game-theoretic; the network is typically assumed to be fixed, and the goal
is to compute cost shares with certain properties. Chapter 15 considers cost sharing in
a game-theoretic context by assuming the existence of a central authority who must
compute cost shares for nodes, each of which has a private utility for inclusion in the
network. Thus, the focus is on developing a cost sharing mechanism that induces nodes
to reveal their true valuations.

Our general results for potential games suggest some natural extentions to the global
connection game. For example, if we consider the global connection game played on
undirected networks, then W(S) is still a potential function. Thus we again have that
pure equilibria exist and the price of stability is at most ;. We can also generalize the
global connection game by allowing players to have more than two terminals they wish
to connect. In such a game, players would select trees spanning their terminals rather
than paths. Again, it is easily verified that W(S) is a potential function, so the same
results apply. Furthermore, we assumed that the cost of each edge c, is independent of
the number of users. Consider the case when the cost c.(k,) of the edge e depends on the
number of players (k) that use the edge e. The same analysis also extends to this version,
assuming the function c,(k.) is concave, that is, the cost exhibits an “economy of scale”
property; adding a new user is cheaper when a larger population is using the edge.

Anshelevich et al. (2003) consider an unrestricted variant of the global connection
game. In this game, players select not only a path but also cost shares for each edge on
that path. If the combined shares for an edge cover its cost, that edge is built. Players
are assumed to be unhappy if their path is not fully built, and otherwise aim to minimize
their cost shares. This game does not necessarily have pure equilibria, and even when
it does, even the price of stability may be O (k). However, in the special case of single
source games (all players seek connection to a common terminal), the price of stability
is shown to be 1.

Chen and Roughgarden (2006) study a weighted generalization of the global con-
nection game, in which each player has a weight, and costs shares are assigned in
proportion to these weights. This turns out not to be a potential game, and further, the
authors provide an instance in which no pure equilibrium exists. This paper focuses
on finding outcomes that are both approximate equilibria and close to optimal. An-
other similar weighted game is presented by Libman and Orda (2001), with a different
mechanism for distributing costs among users. They do not consider the quality of
equilibria, but instead study convergence in parallel networks.
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Milchtaich (1996) considers a generalization of congestion games in which each
player has her own payoff function. Equilibria are shown to exist in some class of these
games even though a potential function may not.

Open Problems

Recall the network shown in Figure 19.3(b), which shows that the price of stability may
"H for the global connection game. Note, however, that if the edges are undirected, then
the price of stability falls to 1. The actual worst-case price of anarchy for undirected
graphs remains an open question.

There are a wide variety of cost-sharing schemes, as defined by Chen and
Roughgarden (2006), that might be relevant either for practical reasons (such as be-
ing more fair), or because they induce better outcomes for certain specific classes of
networks. Many such schemes, including weighted fair sharing, do not yield exact
potential games. For a large number of these cost-sharing games, the price of anarchy,
the price of stability, and even the existence of pure equilibria remain unresolved.

More generally, the class of games we consider aims to model situations where users
are building a global shared network and care about global properties of the network
they build. Our focus was on requiring connectivity (of a terminal set) and aiming
to minimize cost. More generally, it would be valuable to understand which type of
utility measures yield games with good price of stability properties. For example, we
might consider users who are allowed to leave some terminals unconnected, or who
care about other properties of the resulting network, such as distances, congestion, etc.

Potential functions are an important tool in understanding the price of anarchy and
stability in games. A recent survey of Roughgarden (2006) shows that one can also un-
derstand the price of anarchy analysis of resource allocation problems (see Chapter 21)
via the potential function method. Surprisingly, many of the price of anarchy and
stability results known to date are for potential games (and their weighted variants);
the routing games of Chapter 18, the facility location game of Section 19.4, and the
load balancing problems of Chapter 20. In a number of these cases, the analysis of the
price of anarchy or stability uses alternative techniques to derive stronger bounds than
could have been obtained using the potential function method (e.g., bounding the price
of anarchy with multiple equilibria, or analyzing weighted variants of these games).
However, one wonders if potential functions still play a role here that we do not fully
understand.

19.5.3 Facility Location Game

There is a large body of literature dedicated to understanding the effects of pricing
in games. Much of this work focuses on establishing the existence of equilibria, and
considering qualitative properties of equilibria (such as whether improved service leads
to improved profit, or if selfish pricing leads to socially efficient outcomes).

Our focus with the facility location game is to understand the effect of selfish
pricing on the overall efficiency of a network. In many settings, selfish pricing leads
to a significant reduction in social welfare, and may also yield models with no pure
equilibria. An example of this issue is the pricing game of Example 8 in Chapter 1.
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See also Chapter 22 for a discussion of these issues in the context of communication
networks.

Our price of anarchy bound requires that social welfare be monotone in the set of
facilities selected. It is natural to try to extend this game to a scenario in which facilities
cost money: in addition to paying the service cost cj,, for servicing a client j from a
facility s;, the provider also pays an installation cost f(s;) for building at s;. Unfortu-
nately, there is no constant bound for the price of anarchy for this case. See Exercise
19.17, which observes that when investment costs are large, noncooperative players do
not always make the right investments, and thus equilibria may be far from optimal.

Utility games defined in Section 19.4.3 have a wide range of applications, including
routing (Vetta, 2002) (see Exercise 19.18), and a market sharing game introduced by
Goemans et al. (2006) in the context of content distribution in ad-hoc networks (see
Exercises 19.16 for a special case).

In Section 19.4 we bounded the price of anarchy only for pure equilibria. Recall,
however, that general utility games may not have pure equilibria. Theorem 19.19
bounding the quality of equilibria also holds for mixed equilibria (Vetta, 2002) and
thus is applicable in a much broader context.

Section 19.4.5 showed that in basic utility games, we can bound the quality of
solutions without reaching an equilibrium. Such bounds would be even more valuable
for general utility games, as these might not have any pure equilibria. Goemans et al.
(2005) provide such bounds for a few other games, including some routing games.
Unfortunately, the quality of a solution in a general utility game can be very low even
after infinitely long game play, as shown by Mirrokni and Vetta (2004).

Open Problems

Many pricing games fail to have Nash equilibria (Example 8 from Chapter 1) and
others have equilibria with very low social value (high price of anarchy and stability).
The facility location games give a class of examples where pure Nash equilibria exist,
and the price of anarchy is small. It would be great to understand which other classes
of pricing games share these features.

It will also be extremely important to understand which other classes of games admit
good-quality bounds after limited game play, as shown in Section 19.4.5 for facility
location games.
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Exercises

19.1  Consider the local connection game from Section 19.2. In Lemma 19.1, we saw
that the star is an optimal solution for & > 2, and the complete graph is an optimal
solution for & < 2. Prove that if & # 2, then these are in fact the only optimal
solutions.

19.2 Give a complete characterization of all optimal networks for o = 2.
19.3 Show that when « < 1 the complete graph is the only equilibrium.

19.4 Show that a sufficiently long path cannot be a Nash equilibrium of the local
connection game from Section 19.2.

19.5 Show that any path can be a pairwise stable network for a large enough value of
« in the bilateral network formation game introduced in Section 19.5.1.

19.6 Construct a Nash equilibrium that is not a star for o« > 2.
19.7 Show that when o > n? all Nash equilibria of the local connection game are trees
and the price of anarchy is bounded by a constant.

19.8 Prove that the bounds of Lemma 19.4 and Theorems 19.5 and 19.6 are also valid
for the worst possible quality of a pairwise stable equilibria of the bilateral version
of the game (where an edge needs to be selected, and paid for by both endpoints
to be included in G).

19.9 Prove that in the global connection game, the price of anarchy can never exceed
k, the number of players.
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19.10

19.11

19.12

NETWORK FORMATION GAMES

Consider the following weighted generalization of the global connection game.
For each player i, we have a weight w; > 0. As before, each player selects a single
path connecting her source and sink. But instead of sharing edge costs equally,
players are now assigned cost shares in proportion to their weight. In particular,
for a strategy vector S and edge e, let S. denote those players whose path contains
e and let W, = 3, ¢ w; be the total weight of these players. Then player i pays
cow;/ W, for each edge e € P;. Note that if all players have the same weight, this
is the original game. Show that, in general, this game does not have an exact
potential function.

In the global network formation game, edge costs reflect fixed building expenses,
and thus each player’s share for an edge e decreases as more players use e.
We might also consider a model with the opposite behavior, i.e., a model in
which the cost of using e increases with the number of players. This would be
more appropriate for modeling latency or similar effects that make congestion
undesirable.

Consider a game played on a network G with k players. Player i has a source
s; and a sink t;. Each edge e € C also has a nondecreasing latency function £(x),
indicating the cost incurred by each player on e if there are x of these players. A
strategy for i is a path from s; to t;, and choosing a path P; incurs a total cost of

cost(Py) =) Lelke),

eep;

where k. is the number of players using e.

(@) Prove that this game has an exact potential function.
(b) Suppose that we also give each player i an integral weight w; > 1.

A strategy for i is a multiset S; of w; paths from s; to t;. Notice that we
do not insist that these paths be disjoint, or even distinct. Costs are now
assigned in a natural way; we first compute the cost that each individual path
would be charged if each corresponded to a distinct player. Then each player
i is charged the sum of the costs of all paths in S;. Prove that if the latency
functions £.(x) are linear for all e, then this game has an exact potential
function.

(c) Show that if €.(x) is not linear, then there may not be an exact potential
function.

One problem with using best response dynamics to find pure equilibria in poten-
tial games such as the global connection game is that the running time may be
exponential. One natural way to deal with this problem is to run best response
dynamics, but to consider only moves that provide a substantial decrease in the
potential function. In particular, for a constant € > 0, we say a best response
move is substantial if it decreases the potential function by at least an €/ k fraction
of its current value. We consider the process of making substantial best response
moves until none are available.

(@) Prove that this process terminates in time that is polynomial in n, k, and
log(e™).

(b) Show that the resulting outcome is not necessarily an approximate equilib-
rium. That is, show that there may be players who can decrease their costs by
an arbitrarily large factor.
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Suppose that we have a game G and a function ®(S) mapping game states to
reals with the following property: for any strategy vectors S = (51, S2, ..., Sk),
and any alternate strategy S/ # S; for some player i, thenif S’ = (5_;, S), we have
that ®(S) — ®(5') and u;(S) — u;(S) share the same sign. Thus ®(S) behaves like
an exact potential function, except instead of tracking a player’s improvement
exactly, it simply tracks the direction of the improvement; when a player makes
an improving move, the potential function decreases. We call such a function an

ordinal potential function, and G an ordinal potential game.

(@) Prove that if G is an ordinal potential game, then best response dynamics
always converge to a Nash equilibrium.

(b) Prove that the converse is also true; if, from any starting configuration, best
response dynamics always converge to an equilibrium, then G is an ordinal
potential game.

Give an example of the global connection game for which the best Nash equi-
librium does not minimize the potential function W.

Prove that any congestion game is an exact potential game.

Consider the following location game. We have an unweighted, undirected net-
work G and k players. Each player selects a node in G as their location. Each
node v has one unit of wealth that it uniformly distributes to all players in N[v],
the closed neighborhood of v. If there are no players in N[v], this wealth is lost.
For example, if v has neighbors u and x, 2 players locate at v, 3 players locate
at u, and no one locates at x, then v awards 1/5 to each of these 5 players. The
utility of a player is simply the sum of the value awarded to it by all nodes. We
define the social utility of this game as the number of nodes that have at least one
player located in their closed neighborhood.

(@) Prove that the price of anarchy of this game can be arbitrarily close to 2.
(b) Prove that this location game is a valid utility game.

In theorem 19.19 we showed that if the facilities cost 0, then the social welfare
of any Nash equilibrium is at least 1/2 of the maximum possible social welfare of
any solution. In this problem, we consider a variant where facilities cost money;
each possibly facility s; has a cost f(s;), to be paid by a player who locates a
facility at s;.

(@) Is the same bound on the quality of a Nash equilibrium also true for the variant
of this game that facilities cost money? Prove or give an example where it is
not true.

(b) Let F denote the total facility cost of at a Nash equilibrium S, i.e., the sum
> s fs- Show that we can bound the optimum V(O) by 2V/(S) + F.

We now consider a variant of the selfish routing game of Chapter 18 with k players.
We have a graph G and a delay function £.(x) that is monotone increasing and
convex for each edge e € E . Player i has a source s; and a destination t;, and must
select an s; — t; path P; on which to route 1 unit of traffic. Player i will tolerate
up to d; delay. Player i picks a path from's; to ¢; with minimum delay, or no path
at all if this delay exceeds d}.

(@) Show that this game always has a pure (deterministic) Nash equilibrium.
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(b) The traditional way to evaluate such routing games is with the sum of all
delays as cost. However, in this version, the cost may be low simply because
few players get routed. Thus we can instead consider the value gathered by
each player; di minus the delay incurred if i does route her traffic, and 0
if she doesn’t. By definition, all players routed have nonnegative value. The
total value of a solution is simply the sum of player values. Show that this is
a utility game.

(c) Is this game a monotone utility game?



